Code No.: 16448 (C) N

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.C.E.) VI-Semester Main Examinations, May/June-2023

Wireless Sensor Networks (PE-I)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Part-A $(10 \times 2 = 20 \text{ Marks})$	724						
	Stem of the question	M	L	CC	PO	PSC		
1.	Mention challenges while designing the wireless sensor networks.	2	1	1	1	2		
2.	Specify the applications of mobile Ad hoc networks.	2	1	1	2	2		
3.	Differentiate mote and node used in WSN.	2	2	2	2	2		
4.	Justify the need for multi hop networks in WSN.	2	2	2	2	2		
5.	Define wake up radio concept.	2	1	3	1	2		
<i>'</i> 5.	Explain how to overcome expose terminal problem.	2	1	3	1	2		
7.	Why time synchronization is required in sensing the network.	2	2	4	2	2		
8.	Explain how clustering helps in topology control.	2	1	4	1	2		
9.	Draw Berkeley motes and its applications.	2	1	5	1	2		
10.	Write various node level simulators.	2	2	5	1	2		
	Part-B $(5 \times 8 = 40 Marks)$							
1. a)	Compare and contrast various enabling technologies in Wireless sensor networks.	4	3	1	2	2		
b)	Explain the characteristics and requirements of Wireless sensor networks.	4	2	1	1	2		
2. a)]	Design the single node architecture of Wireless sensor networks.	4	3	2	2	2		
b) 1	llustrate various programming paradigms with examples.	4	3	2	2	2 2		
	Discuss IEEE 802.15.4 MAC protocol along with 6	4	2	3	1	2		
	Classify various MAC routing protocols used in W.	4	1	3	1	2		

Code No.: 16448 (C) N

14. a)	Describe various merits to measure efficiency of topology control algorithms.	4	2	4	1	2
b)	Draw and explain localization taxonomy with examples.	4	2	4	1	2
15. a)	Illustrate various programming challenges in WSN.	4	3	5	1	2
b)	Discuss state centric programming with an example.	4	2	5	1	2
16. a)	Compare the key characteristics VANETs and MANETs.	4	3	1	1	2
b)	Illustrate various gateways with an example in wireless sensor networks.	4	2	2	1	2
17.	Answer any two of the following:					
a)	Draw and explain ZIGBEE protocol structure and frame format.	4	2	3	1	2
(b)	Discuss various examples for sensor tracking.	4	2	4	1	2
(c)	Mention the design specifications of Tiny OS operating system.	4	3	5	1	2

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

:>	Blooms Taxonomy Level – 1	20%
1)	Blooms Taxonomy Level – 2	52.5%
iii)	Blooms Taxonomy Level – 3 & 4	27.5%
